Author Correction: Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat
نویسندگان
چکیده
منابع مشابه
Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat
A novel strain LTYR-11ZT that exhibited multiple plant growth promoting (PGP) traits was isolated from the surface-sterilized leaves of Alhagi sparsifolia Shap. (Leguminosae), which reprsents one of the top drought tolerant plants in north-west China. Phylogenetic analysis of 16S rRNA gene sequences and multilocus sequence analysis based on partial sequences of atpD, gyrB, infB and rpoB genes r...
متن کاملGenetic and genomic tools to improve drought tolerance in wheat.
Tolerance to drought is a quantitative trait, with a complex phenotype, often confounded by plant phenology. Breeding for drought tolerance is further complicated since several types of abiotic stress, such as high temperatures, high irradiance, and nutrient toxicities or deficiencies can challenge crop plants simultaneously. Although marker-assisted selection is now widely deployed in wheat, i...
متن کاملDrought Tolerance in Wheat
Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are i...
متن کاملDrought Tolerance in Modern and Wild Wheat
The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial ...
متن کاملSfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance
Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-ty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2021
ISSN: 2045-2322
DOI: 10.1038/s41598-021-86899-4